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Abstract. A surface spin–flop transition has recently been observed in a multilayer Fe/Cr film
(superlattice) that may be effectively described by a classical antiferromagnetic chain with a single-
ion anisotropy. In this paper we explore such a transition in a classical spin chain with exchange
anisotropy. Our theoretical results may suggest the occurrence of a similar phenomenon in quantum
spin chains doped with nonmagnetic ions.

The recent experimental observation of a surface spin–flop (SSF) transition in an Fe/Cr
superlattice [1–3] generally confirmed early theoretical ideas [4–6]. However, the finer details
of the transition turned out to be rather intricate and are being clarified in a number of current
theoretical investigations [7–13]. In these studies the superlattice is modelled by a classical
spin chain with an isotropic antiferromagnetic exchange interaction and a single-ion anisotropy.

Here we propose to explore the possibility of a similar transition in the presence of an
exchange anisotropy, in the context of spin systems described by theXYZ Hamiltonian [14]
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defined on an open chain with3 sites. In practice, spin chains of finite size can be produced
through doping with nonmagnetic ions and various surface effects may then be investigated
[15]. However, there seems to have been no experimental or theoretical attention to the
possibility of a SSF transition, except for a peripheral comment made in [16]. We thus initiate
a theoretical study of such a transition in theclassical XYZmodel, whose aim is twofold: first,
to provide an alternative example that may indirectly illuminate some of the darker features of
classical superlattices and secondly to set the stage for the study of similar effects in quantum
spin chains which are, of course, more relevant for the description of crystalline magnets.

The class of Hamiltonians (1) will be restricted by the inequalities|J1| 6 J2 < J3 which
contain as a special case the antiferromagneticXXZ or Heisenberg–Ising chains(J1 = J2).
We shall only discuss the classical minimum (ground state) of (1) which turns out to be
independent of the specific value ofJ1 in the above parameter range. In other words, the
minimum is achieved with a spin configuration of the formSx` = 0, Sy` = sinθ`, S

z
` = cosθ`

where the magnitude of the classical spin has been normalized to unity. The mathematical
problem then reduces to the minimization of the effective potential

V =
3−1∑
`=1

(sinθ` sinθ`+1 +1 cosθ` cosθ`+1)−H
3∑
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cosθ` (2)
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Figure 1. The classical phase diagram for an open chain and1 > 1.

where the relevant exchange constants were chosen according toJ2 = 1 andJ3 ≡ 1 > 1.
We shall further assume that the total number of lattice sites is even(3 = 2N) and defer any
comment on the case of an odd chain for a later stage of our discussion.

The minimization ofV can be carried out analytically on a cyclic or infinite chain and
yields three magnetic phases separated by the two critical fields

H3 = 2
√
12 − 1 H4 = 2(1 + 1). (3)

ForH < H3 the minimum is achieved by the usual Néel states(θ`) = (0, π,0, π, . . . ,0, π) or
(π, 0, π,0, . . . , π,0). A bulk spin–flop (BSF) transition takes place atH3 and the ground state
becomes a canted stateθ` = (−1)`θ0, with cosθ0 = H/2(1+1), in the regionH3 < H < H4.
Finally, the system orders ferromagnetically(θ` = 0) above the critical fieldH4. The
corresponding three phases are labelled as antiferromagnetic (AF), BSF and ferromagnetic
(F) in the phase diagram of figure 1. Actually, this phase diagram also displays a rather
involved fine structure in the AF phase which emerges in the presence of open boundaries and
is the subject of our subsequent discussions.

Indeed, examination of local fluctuations of the Néel state on an open chain reveals the
formation of surface magnon modes of the type originally discussed in the case of single-ion
anisotropy by Mills and Saslow [5] and more recently in [13]. A similar analysis in the present
model on a semi-infinite chain leads to a new critical field

H1 = 1

21

[√
(12 − 1)(912 − 1)− (12 − 1)

]
< H3 (4)

at which a surface magnon mode turns soft and hence the Néel state is rendered locally unstable
for H > H1. As a consequence, the pure AF phase shrinks down to AF1 which corresponds
to the regionH < H1 in figure 1. It is also worth noting that the ratioH3/H1 approaches the
value

√
2 in the isotropic limit1 → 1+; namely, the same value as in the case of vanishing

single-ion anisotropy [4–6]. When1 → ∞ the ratioH3/H1 becomes equal to two, a value
that may also be inferred from an elementary analysis of the extreme Ising limit.

In the regionH > H1 the ground state is highly nontrivial and cannot be obtained
analytically on an open chain. Instead we adopt a numerical method based on a straightforward
relaxation algorithm [13]. We first consider the relatively weak anisotropy1 = 1.125 for
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Figure 2. Field dependence of the total magnetization and susceptibility for an open chain with
3 = 22 sites and1 = 1.125. (a) The two nonvanishing components of the magnetizationµ2 and
µ3. (b) The diagonal susceptibilityχ33 defined as in equation (5).

which the critical fields are calculated from equations (3) and (4) to beH1 = 0.620 81,
H3 = 1.030 78 andH4 = 4.25. The length of the chain is set at3 = 22 which is a popular
size for currently synthesized Fe/Cr superlattices [1–3]. Our numerical calculation provided
detailed information on the ground-state spin configuration S` = (0, sinθ`, cosθ`), as well as
on the total magnetizationµ and susceptibilityχ defined as

µ =
3∑
`=1

S̀ ≡ (µ1 = 0, µ2, µ3) χ23 = 1

3

∂µ2

∂H
χ33 = 1

3

∂µ3

∂H
(5)

and illustrated in figure 2. The phase transition observed atH1 is smoother than the one
encountered in the single-ion model and may be called a first-order transition of the ‘moderate
type’.

Specifically, the energy is minimized by a surface state that emanatesgradually from the
Néel state as the bias fieldH crosses the critical valueH1. As a result, it is the susceptibility
and not the magnetization that suffers a sudden jump atH1. With further increase of the bias
field beyondH1, a new structure emerges at yet another ‘critical’ value:

H2 = 1

21

[√
(12 − 1)(912 − 1) + (12 − 1)

]
H1 < H2 < H3 (6)

orH2 = 0.856 42 for1 = 1.125. Whereas the detailed argument leading to equation (6) will
not be presented in this short paper, the physical significance of the critical fieldH2 should
become evident from the ensuing discussion.

At sufficiently weak anisotropy the regionH1 < H < H2 may be called the SSF phase,
because the calculated ground-state configuration is a bona fide surface state formed near one
of the two endpoints of the finite chain, and corresponds to the lower part of phase AF2 in
figure 1. As the bias field approachesH2 the surface state organizes itself into an AF domain
wall. Once nucleated, the domain wall begins to move toward the centre of the chain, with
increasing bias field, and does so rapidly whenH crossesH2. The wall eventually migrates
and becomes symmetric about the centre to great numerical precision near the critical fieldH3;
i.e., near the boundary of the anticipated BSF transition. Therefore the regionH2 < H < H3

may be called the domain-wall phase and is labelled as phase AF3 in figure 1. In fact, the BSF
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Figure 3. As figure 2 but for a stronger anisotropy,1 = 1.250.

transition is not sharp on a finite chain but is characterized by a rapid crossover behaviour when
H ∼ H3. In the regionH & H3 the domain wall expands symmetrically about the centre to
become a nearly uniform canted state within the bulk with notable nonuniformities near the
edges. Finally, complete F order is achieved whenH crosses the last critical fieldH4.

The preceding description of the ground state is clearly reflected in the field dependence
of the magnetization and the susceptibility shown in figure 2. Thus, the third component of
the magnetization(µ3) gradually acquires nonvanishing values above the critical fieldH1 and
develops a knee atH2. A rapid variation ofµ3 is observed near the critical fieldH3, which is
the finite-chain analogue of a sharp BSF transition. BeyondH3, µ3 increases monotonically
until it reaches ferromagnetic saturation(µ3 = 3 = 22) at the critical fieldH4 not shown in
the figure range. The variation ofµ3 is more clearly demonstrated through its field derivative in
figure 2(b). Returning to figure 2(a), we note that the magnetization develops a nonvanishing
component also along the second direction(µ2), mainly in the interval [H1, H2], and hence
the spin configuration is significantly twisted within the SSF phase.

Therefore, the emerging picture shares several common features with the one derived
within the single-ion model [10]. But there also exist some important differences. In particular,
the boundary of local stability of the Ńeel state(H = H1) no longer coincides with the critical
field H2 where the nucleated domain wall begins to quickly move away from the surface
(H1 6= H2). The accidental coincidence of these two critical fields in the single-ion model
leads to a more involved picture, especially in connection with hysteresis [12, 13], and was
partly responsible for some confusion generated on that subject.

Our next concern is to examine how the derived picture evolves with increasing anisotropy.
A first hint is obtained by repeating the calculation for1 = 1.250. The results for the
magnetization and susceptibility are shown in figure 3 and display a great deal of fine structure
around the critical fieldH2. This structure suggests a complicated energy landscape of the
effective potential (2) analogous to that occurring in the single-ion model [7–9]. The picture
becomes increasingly involved for intermediate anisotropies in the neighbourhood of1 ∼ 2.

In order to temporarily sidestep the complexities of the intermediate regime, we consider
the case of strong anisotropy where the picture is again simplified. A surface state is still
formed when the bias field crossesH1 and persists over a nontrivial region aboveH1 until
it regroups itself into a domain wall. The main difference from the weak-anisotropy region
is that the nucleated domain wall is now an ideal Ising wall located right at the boundary of
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the chain; namely,(θ`) = (0, 0, π,0, π,0, . . .) ≡ |0〉. Here we adopt [10] the convenient
symbol|2n〉, with n = 0, 1, 2, . . . , to denote an Ising domain wall locatedn steps away for
the chain boundary; e.g.|2〉 = (0, π,0, 0, π,0, . . .), and so on. An ideal Ising wall is an exact
stationarypoint of the effective potential and, once created, will persist as the relevant ground-
state configuration for all field valuesH for which it is locally stableat a given anisotropy
1. Examination of quadratic fluctuations around the stationary point|0〉 yields an algebraic
condition that determines the boundary of its local stability, namely

21H 4 − 2(412 − 1)H 3 + 51(212 − 1)H 2 − (414 − 512 + 1)H − 21(12 − 1) = 0. (7)

The roots of this equation in the upper-right quadrant of the(1,H) plane were obtained
numerically and provided the boundary of phase AF4 in figure 1.

Within AF4 the Ising domain wall|0〉 is locally stable and is the relevant ground-state
configuration when the bias field is increased adiabatically, either continuously or in small
steps. Putting it differently, the state|0〉 persists even when it eventually becomes metastable
in the sense that its energy becomes higher than the energy of other local minima of the
effective potential. However, when the field exceeds the right boundary of the AF4 phase,
one enters again the domain-wall phase AF3 in which the Ising wall|0〉 initially spreads out
to some extent and then quickly migrates to the centre of the chain; in analogy with the
picture described earlier for weak anisotropy. A byproduct of this analysis is that the critical
boundaryH2 of equation (6) is not meaningful at strong anisotropy and is thus terminated at
the ‘multicritical point’ P , in figure 1, which is defined as the intersection ofH = H2(1)

and the boundary of the AF4 phase calculated from equation (7). Explicitly one finds that
P = (1,H) = (1.780 7764, 2.780 7764).

The multicritical point is endowed with the following remarkable property. The boundaries
of local stability of the Ising domain walls|2n〉, denoted byH[2n] = H[2n](1) with
n = 0, 1, . . . ,∞, all intersect at the pointP calculated in the preceding paragraph. The
special caseH[0] is the boundary of the AF4 phase calculated from equation (7), while the
other extreme member of the family is given by

H[∞] = 2

21 + 1

[
1(1 + 1)±

√
1(1 + 1)(12 −1− 1)

]
. (8)

The corresponding curve is shown by a dashed curve in figure 1 and provides the lower boundary
of the region of local stability of an ideal Ising wall located well within the bulk of the chain.
Outside that region the wall stabilizes by spreading out to become a topological defect with a
nontrivial spatial distribution. A notable fact is that an ideal Ising wall is unstable at vanishing
field for any finite value of1, however large; in contrast to the situation in the single-ion model
where Ising walls can be stable even at vanishing field provided that the anisotropy exceeds a
certain critical value [10, 17].

The preceding results should prove helpful for a more detailed understanding of the
intermediate regime but we shall not pursue such an analysis further in this paper. We thus
conclude our discussion of the classicalXYZ model with two brief comments.

First, we note that all analytical results leading to the phase boundaries of figure 1 were
derived on a semi-infinite chain, whereas the numerical results of figures 2 and 3 were obtained
on a finite chain with3 = 22 sites. However, the AF1: AF2 boundary predicted analytically by
equation (4) agrees with the numerically calculated boundary at3 = 22 and1 = 1.125 to eight
significant figures, while greater accuracy is achieved for longer chains or stronger anisotropy.
Deviations from the analytical predictions may emerge in the extreme isotropic limit1→ 1+

which requires a numerical calculation on increasingly longer chains. Similarly, the bulk spin–
flop transition anticipated to occur at the AF3: BSF boundary is actually replaced by a rounded
crossover transition on a finite chain, which becomes sharp as the chain size increases.
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Secondly, we comment on the case of an odd chain(3 = 2N +1). The main difference in
the Ńeel state of an odd chain is that the two outer spins point in the same direction. Therefore
when the bias field is applied along the common direction of the outer spins a SSF transition is
absent and the chain proceeds directly to the BSF transition. When the field is applied in the
opposite direction a SSF transition takes place at both ends. Hence the study of an odd open
chain does not appear to add anything fundamentally new.

While the classical analysis reveals a rich phase diagram due to surface effects, the situation
is less clear for quantum spin chains. An important special case is the spin− 1

2 Heisenberg–Ising
chain(J1 = 1 = J2, J3 = 1 > 1) immersed in a bias fieldH pointing along the symmetry
axis. The Hamiltonian may then be diagonalized through the Bethe ansatz [14] and the effect
of the bias field is simply a linear Zeeman shift of the zero-field eigenvalues. Accordingly the
question of spin–flop transitions becomes a problem on level crossings induced by the applied
field. TheT = 0 phase diagram on a cyclic or infinite chain was already considered by Johnson
and McCoy [18] and consists of three magnetic phases, for1 > 1, corresponding to the bulk
AF, BSF and F classical phases of figure 1. Equivalently, the calculation of [18] furnished the
quantum analogues of the critical fieldsH3 andH4 of equation (3). The F boundaryH4 is
the same in the classical and quantum cases, as expected, but the quantum analogue ofH3 is
significantly different and vanishes exponentially in the isotropic limit1→ 1+.

The remaining important question is then to determine whether or not the phase diagram
of [18] acquires fine structure due to surface effects analogous to that displayed in our classical
phase diagram of figure 1. An elementary consideration of magnon excitation gaps in the
extreme Ising limit(1 → ∞) does indeed suggest the existence of a critical fieldH1 such
thatH3/H1 = 2 which is, of course, the same ratio as the one obtained in the classical
calculation. Therefore the immediate question is to follow the above observation down to
finite anisotropy1 and eventually calculate the ratioH3/H1 in the limit1 → 1+ where the
classical model suggests the value

√
2. Of course, the classical model is valid for large spin

s and its detailed predictions may not be reliable ats = 1
2. However, as is often the case, the

broad features of the classical calculation may survive in the quantum theory, at least for some
nontrivial parameter region in the range|J1| 6 J2. Although there have been a large number
of recent investigations of the quantum model addressing surface effects in the presence of
(local) boundary fields [19, 20], the straightforward question posed here in the absence of such
fields does not seem to have been answered.
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